Available online at www.sciencedirect.com

Journal of the European Ceramic Society 23 (2003) 1543–1547

www.elsevier.com/locate/jeurceramsoc

Effect of the residual phases in β -Si₃N₄ seed on the mechanical properties of self-reinforced Si₃N₄ ceramics

Jinhui Dai*, Jianbao Li, Yongjun Chen, Liu Yang

State Key Lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China

Received 10 June 2002; received in revised form 13 September 2002; accepted 28 September 2002

Abstract

In this work, the self-reinforced silicon nitride ceramics with crystal seed of β -Si₃N₄ particles were investigated. Firstly, the seeds were prepared by heating of α -Si₃N₄ powder with Yb₂O₃ and MgO, respectively. Then the self-reinforced silicon nitride ceramics were obtained by HP-sintering of α -Si₃N₄ powder, Yb₂O₃ and the as-prepared seeds which were not treated with acid and/or alkali solution. The results indicated that the introduction of seed with Yb₂O₃ could obviously increase the toughness and room temperature strength of the ceramics. Furthermore, its high temperature strength (1200 °C) could nearly keep higher value as the one of room temperature measured from unreinforced ceramic. However, the seed with MgO abruptly decrease the high temperature strength of the ceramics. The SEM and TEM characterization showed that the rod-like seed particle could favor the toughness and the presence of the Mg promote the formation of crystalline secondary phase.

© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Grain boundaries; Hot pressing; Mechanical properties; Si₃N₄; Seeding

1. Introduction

Silicon nitride ceramics have been identified as one of the promising structural ceramics. Their high strength, high hardness, and good resistance to erosion place silicon nitride ceramics among the prime candidates in high-temperature industrial, automotive, and aerospace application such as cutting tools, wire drawing, dies, and blast nozzles. However, the low toughness is still a handicap that hampered wide potential application. So at present, the improving toughness of silicon nitride ceramics all the same is the one of important problems.

Since the toughness of Si₃N₄ ceramics was improved by Lange¹ with augmentation of aspect ratio of Si₃N₄ grains, a number of research activities have in the past focused on reinforcing Si₃N₄ ceramics by improving of the microstructural features of grains particle.^{2–4} It was an effective method in the similar researches that silicon nitride was reinforced by addition of β -Si₃N₄ single crystal used as a seed.^{5–10} However, synthesis of higher purity β -Si₃N₄ seed particles without additives must run at temperature over 2000 °C.¹¹ While β -Si₃N₄ seed particles ture by sintering of α -Si₃N₄ and different additives.¹² In this case, glass phase more or less formed in these seeds. Acid and/or alkali rinse treatments were always used for the removing of the glass phase. Hirao¹³ produced Si_3N_4 ceramics by adding elongated β - Si_3N_4 grains which were obtained by means of growth from a melt flux and subsequent treatments with acid rinse. But β -Si₃N₄ grains produced using these methods include impurities composed of Y and F or S, and these impurities decrease the strength at high temperatures. The baleful secondary phase strongly affects mechanical properties of silicon nitride. If the seed contained the secondary phase with low melting point, it would greatly decrease the flexure strength of materials at high temperature. Therefore it is worth seeking an easy method by which ideal β -Si₃N₄ particles (without low melting point secondary phase) can be achieved and understanding the effect of the secondary phase on the properties of materials. In this work, two kinds of β -Si₃N₄ seed were prepared. These seeds were not treated with acid and alkali rinse and then added to the original α -Si₃N₄ powders for preparing ceramic materials. The effect of the residual phase in the seed on the mechanical properties of materials was detailed discussed.

could be generally achieved at relative lower tempera-

* Corresponding author. Fax: +86-10-6278-2753.

E-mail address: djh99@mails.tsinghua.edu.cn (D. Jinhui).

2. Experimental process

2.1. Preparation of β -Si₃N₄ seeds

Commercial available α -Si₃N₄ powder (β -Si₃N₄ < 3%, 0 < 1.55, AT&M Industries, Beijing, China) was used as the original powder in this study. Yb₂O₃ and MgO powders (99.9% purity) were used as the transformation additive and the amounts are 2, 4, 6, 8 wt.% and 0.5, 1, 1.5, 2 wt.% respectively. All original powders were mixed with ball milling in ethanol for 24 h, dried at 60 °C for 6 h then were placed in a graphite crucible and heated in a graphite furnace in nitrogen atmosphere for 90 mm. The heating temperatures were 1650 °C for the MgO-contained powders and 1700 °C for the Yb₂O₃-contained powders, respectively. The heated powder were milled and dispersed for characterization.

The as-prepared powder was identified with an X-ray diffractometer. From 20 to 80°, specimens were scanned at a rate of 4°/mm. In addition, from 30 to 40°, the XRD was performed again with a rate of 0.5° /mm for calculating phase ratio. The phase ratio, β -Si₃N₄ to total Si₃N₄ (α -Si₃N₄+ β -Si₃N₄), was determined by a technique derived by Gazzara and Messier.¹⁴ The morphologies of the powder were characterized by scanning electron microscopy (SEM, Model: JSM-6301F).

2.2. Preparation of ceramics specimens

The ditto original powder of α -Si₃N₄ powder, 10 wt.% Yb₂O₃ and 10 wt.% of selective as-prepared β -Si₃N₄ seed were blend with ball milling in ethanol for 24 h and dried at 60 °C in air for 6 h. Then it was hotpressure sintered into a disk in a graphite die (Φ 50 mm) under 25 MPa at 1800 °C for 60 mm in nitrogen atmosphere. The as-prepared disks were cut and ground into the specimens of $3 \times 4 \times 35$ mm³ for the measurement of flexural strength and $4 \times 6 \times 30$ mm³ for the measurement of fracture toughness, respectively. By comparison, a specimen merely added with 10 wt.% Yb₂O₃ was prepared by the same process. The flexure strength was measured by three-point method with a 30 mm span at a loading speed of 0.5 mm/min at room temperature and 1200 °C, respectively. The fracture toughness was determined by single-edge-precracked-beam (SEPB) method at room temperature with 24 mm span at a loading speed of 0.05 mm/mm. The density of specimens was determined by Archimedes method. The theoretical density of the specimens was calculated according to the rule of mixtures. The specimens were characterized by TEM (JEM-200CX) and the intergranular phases were analyzed by using the selectedarea electron diffraction (SAED). The TEM specimens were prepared by cutting and grinding the sintered specimen to a plate with a thickness of 20 μ m, then dimpling and ion beam milling.

3. Results and discussion

3.1. The transformation of Si_3N_4 and morphologies of β - Si_3N_4

As shown in Fig. 1(a), the X-ray diffraction (XRD) pattern of the MgO-added heated powders showed that they still contained α -Si₃N₄ phase when the amount of MgO is less than 1.5%. While when the amount of MgO is up to 2%, the heated powders are nearly composed of single phase of β -Si₃N₄. There is no Mg-contained phase found in the XRD pattern. However, according to the experimental process, Mg-contained phase must exist in the heated powders. We believed that two reasons are responsible for this result. At first, the content of this phase is too low to be identified by XRD. Secondly, the phase is possibly in an amorphous state. But its form is unknown; maybe it is in the form of Mg-Si-O-N or Mg-Si-O. Fig. 1(b) showed the XRD pattern of the Yb₂O₃-added heated powder. From it, it can be observed that when the amount of Yb_2O_3 is 2%, α -Si₃N₄ still existed. And when the amount of Yb₂O₃ is up to 4%, the transformation of α -Si₃N₄ to β -Si₃N₄ is nearly completed. In addition, a crystal phase of $Yb_4Si_2N_2O_7$ formed except β -Si₃N₄ and the amorphous phase of Yb-Si-O and/or Yb-Si-O-N. And when the

Fig. 1. Typical XRD patterns of (a) heated powders at 1650 °C with additive MgO (0, 0.5, 1, 1.5 2 wt.%), and (b) heated powders at 1700 °C with additive Yb₂O₃ (0, 2, 4, 6, 8 wt.%).

amount of Yb_2O_3 is up to 6 and 8%, the content of the $Yb_4Si_2N_2O_7$ phase increased.

It is well known that MgO is a good sintering additive. In earlier years, the densification of silicon nitride ceramics was foremost achieved by MgO. Actually, MgO is not only a good sintering additive but also a good transformation additive for Si_3N_4 . Fig. 2(a) showed a relationship between β -Si₃N₄ ratio in the total Si₃N₄ and MgO amount. It obviously indicated the occurrence of transformation when 0.5 wt.% MgO was added. And the β -Si₃N₄ ratio increased with the increase of MgO content. When the content of MgO is 2 wt.% the β -Si₃N₄ ratio nearly achieved 100%. As an additive, rare earth oxide Yb₂0₃ also accelerated the transformation of Si₃N₄. From Fig. 2(b), it can be observed that the β - Si₃N₄ ratio obviously increased when the content of Yb₂O₃ is over 2%. And it even achieved over 98% when 4% of Yb₂O₃ was added. Then it nearly kept this value even if the amount of Yb₂O₃ up to 8%. Sarin¹⁵ has demonstrated that transformation of Si₃N₄ is a reconstructive process and requires a liquid phase or a vapor phase. The transformation of Si₃N₄ occurs by the solution-reprecipitation process when the liquid phase exists. So the temperature forming liquid phase is an important factor for the transformation. Since both Mg-Si-O-N and/or Mg-Si-O phase have relative lower eutectic point than that of

Fig. 2. The relationships between the β -ratio of Si₃N₄ of heated powders and amount of additive: (a) MgO additive, and (b) Yb₂O₃ additive.

Yb–Si–O and/or Yb–Si–O–N, the transformation of Si_3N_4 with MgO additive can be nearly completed when the heating temperature increased up to 1650 °C.

Morphologies of β -Si₃N₄ single particles obtained from 2 wt.% MgO and 4 wt.% Yb₂O₃ additive were observed by SEM and showed in Fig. 3. Both of them exhibit an integrated rod-like morphology with a diameter of 0.2–0.4 µm and a length of 1.2–1.5 µm [Fig. 3(a) and (b)]. With respect to nucleation and growth, research indicated that the individual seed particles having a larger diameter and relatively short length also have a better chance of developing the self-reinforced microstructure without hindering the densification process.⁹ So the fabricated rod-like β -Si₃N₄ seeds will be especially designed for effectively developing the Si₃N₄ microstructure.

Fig. 3. SME morphologies of heated powders;(a) with additive MgO of 2 wt.% at 1650 °C, and (b) with additive Yb₂O₃ of 4 wt.% at 1700 °C.

Fig. 4. Mechanical properties of the three specimens.

Fig. 5. Typical XRD patterns of HP-sintered Si₃N₄ specimens.

3.2. The intergranular phase and properties of selfreinforced silicon nitride

Two kinds of self-reinforced ceramic specimens were prepared by adding β -Si₃N₄ seeds obtained from 2% MgO and 4% Yb₂O₃, respectively. For comparison, another specimen adding no seed was also prepared by the same method. These specimens were called S_M (adding MgO seed), S_Y (Yb₂O₃ seed) and S_Y (without seed), respectively. The relative densities of the three specimens are 99.5% and more. Fig. 4 showed the mechanical properties of them. From it, it can be observed that all of the specimens have relative high flexural strength at room temperature, and the $S_{\rm Y}$ has the highest flexural strength of 1006 MPa among them. The fracture toughness was also improved. The fracture toughness of S_W is 7.6 Mpa m^{1/2}, while those of S_M and $S_{\rm Y}$ increased to 8.1 and 9.1 Mpa $m^{1/2},$ respectively. Both of the β -Si₃N₄ seeds can obviously make for the toughening process of silicon nitride materials. However, it can also be observed that the high-temperature $(1200 \,^{\circ}\text{C})$ flexure strength of S_M decreases more quickly than that of $S_W\!,$ whereas the S_Y have a relative high reserved strength at 1200 °C.

It is well known that the properties of materials are dependent on the chemical composition and microstructure of materials. The chemical composition and

(b)

(c)

Fig. 6. TEM images of the specimens and SAED patterns of the intergranular phase: (a) S_W , (b) S_M and (c) S_Y .

1547

content of intergranular phase have important effects on the properties of specimen. In present study, different types of intergranular phases were found in different specimens. The results of XRD analysis obviously indicated that the S_W and S_Y contained no secondary crystal phase, but the secondary crystal phase of $Yb_4Si_2N_2O_7$ was obviously seen in the SM (Fig. 5). Fig. 6 is TEM images of the three specimens. The inserted SAED patterns also confirmed such results. The ambiguous circles appeared in S_W and S_Y indicated that they contained no secondary crystal phase [Fig. 6(a) and (c)]. Fig. 6(b), however, showed that S_M contained secondary crystal phase, which is corresponding to the XRD results. Based on these evidences, high temperature strength of S_M should be higher than those of S_W and S_{Y} . because the secondary crystal phase of Yb₄Si₂N₂O₇ has 1870 °C high melt point.¹⁶ However, the oppositional result was obtained. The main difference among S_M , S_W and S_Y is that in S_M , Mg-contained glass phase exists. We believed that the residual Mg-contained phase at grain boundary mainly plays two roles in the sintering process. At first, this phase with low melt temperature provides a chance for the crystallization of Yb₄Si₂N₂O₇ during the cooling process. Because when Yb₄Si₂N₂O₇ phase crystallized from the melt, the Mg-contained phase still exists in a liquid state that has a low viscosity, which can accelerate the diffusion process and bring on the crystallization of Yb₄Si₂N₂O₇. This role should result in an increase of the high-temperature strength. On the other hand, the Mg-contained phase has a lower softening temperature than that of Yb-contained phase; it will soften in an earlier time than the glass phase in $S_{\rm Y}$ and S_W during the heating process and result in decrease of the high-temperature strength. The latter role is a predominated factor that affects the high-temperature strength. Therefore, we can draw a conclusion that the residual Mg-contained glass phase caused the formation of different intergranular crystallized phase Yb₄Si₂N₂O₇ and lower high-temperature strength of specimens.

4. Conclusions

Two types of β -Si₃N₄ seed with MgO and Y₂O₃ were prepared. And self-reinforced ceramics were prepared by adding the β -Si₃N₄ seeds. The mechanical properties of them were investigated at room temperature and 1200 °C. The effect of intergranular phase on the high-temperature strength was analyzed. The main conclusions are:

- 1. Both of the β -Si₃N₄ seeds (Y-seed and M-seed) obviously improve the toughness of silicon nitride ceramic.
- 2. Presence of a bit of Mg-contained phase with relative lower softening temperature in the speci-

men results in the decrease of high-temperature strength of self-reinforced silicon nitride ceramics and brings on crystallization of Yb₄Si₂N₂O₇ phase.

3. The rod-like β -Si₃N₄ particles prepared with Yb₂O₃ additive, which were not treated by acid and/or alkali solution rinse, can be used as an effective seed to improve the toughness of silicon nitride ceramic. And this seed does not degrade the high temperature strength of ceramics.

Acknowledgements

The authors would like to thank the support from The National High Technology Research and Development Program of China (863 Program) (No: 2002AA332060).

References

- Lange, F. F., Fracture toughness of Si₃N₄ as a function of the initial a-phase content. J. Am. Ceram. Soc., 1979, 62(7–8), 428–430.
- Tani, E., Gas-pressure sintering of Si₃N₄ with concurrent addition of Al₂O₃ and 5wt% rare earth oxide: high fracture toughness Si₃N₄ with fiber-lick structure. *Am. Ceram. Soc. Bull.*, 1986, 65, 1311–1315.
- Kawashima, X., Grain size dependence of the fracture toughness of silicon nitride ceramics. J. Ceram. Soc. Jpn., 1991, 99, 320–323.
- Kimin, L. and Wonho, L. *et al.*, Microstructural evolution and mechanical properties of gas-pressure-sintered Si₃N₄ with Yb₂O₃ as a sintering aid. *J. Mater Res.*, 1999, 14(5), 1904–1909.
- Emoto, H. and Mitomo, H., Control and characterization of abnormally grown grains in silicon nitride. *J. Eur. Ceram. Soc.*, 1997, 17, 797–804.
- Kanzaki, S., Manuel, E., Brito, M., Valecillos, C. and Hirao, K., Microstructure designing of silicon nitride. *J. Eur. Ceram. Soc.*, 1997, 17, 1841–1847.
- Hirosaki, N., Okamoto, Y., Munakata, F. and Akimune, Y., Effect of seeding on the thermal conductivity of self-reinforced silicon nitride. *J. Eur. Ceram. Soc.*, 1999, **19**, 2183–2187.
- Peillon, F. C. and Thevenot, F., Microstructure designing of silicon nitride related to toughness. J. Eur. Ceram. Soc., 2002, 22, 271–278.
- Lu, H. H. and Huang, J. L., Microstructure in silicon nitride containing β-phase seeding: part I. J. Mater Res., 1999, 14(7), 2966–2973.
- Rhee, S. H. and Lee, J. D., Effect of β-seed addition on the microstructural evolution of silicon nitride ceramics. J. Am. Ceram. Soc., 2001, 84(12), 3040–3042.
- 11. Hirata, T., Akiyama, K. and Morimoto, T., Thesis of β -Si₃N₄ particles from α -Si₃N₄ particles. *J. Eur. Ceram. Soc.*, 2000, **20**, 1191–1195.
- Hirao, K., Preparation of rod-like β-Si₃N₄ single crystal particles. J. Ceram. Soc. Jpn., 1993, 101(9), 1078–1080.
- Hirao, K., Microstructure characterization of gas-pressure-sintered betα-Silicon nitride containing large β-silicon nitride seeds. *J. Am. Ceram. Soc.*, 1994, **77**, 1093–1097.
- 14. Gazzara, C. P. and Messier, D. R., Determination of phase content of Si_3N_4 by X-ray diffraction analysis. *Ceram. Bull.*, 1977, **56**(9), 777–780.
- Sarin, V. K., On the alpha-to-beta phase transformation in silicon nitride. *Mater. Sci. Engin.*, 1988, 105/106, 151–159.
- Nishimura, T. and Mitomo, M., Phase relationships in the system Si₃N₄-SiO₂-Yb₇O₃. J. Mater. Res., 1995, **10**(2), 240–242.